AIDS dementia complex

AIDS dementia complex
Classification and external resources
ICD-10 B22, F02.4
ICD-9 042
MeSH D015526

AIDS dementia complex (ADC; also known as HIV dementia, HIV encephalopathy, HIV-associated dementia and HIV-associated neurocognitive disorder) is a common neurological disorder associated with HIV infection and AIDS. It is a metabolic encephalopathy induced by HIV infection and fueled by immune activation of brain macrophages and microglia.[1] These cells are actively infected with HIV and secrete neurotoxins of both host and viral origin. The essential features of ADC are disabling cognitive impairment accompanied by motor dysfunction, speech problems and behavioral change. Cognitive impairment is characterised by mental slowness, trouble with memory and poor concentration. Motor symptoms include a loss of fine motor control leading to clumsiness, poor balance and tremors. Behavioral changes may include apathy, lethargy and diminished emotional responses and spontaneity. Histopathologically, it is identified by the infiltration of monocytes and macrophages into the central nervous system (CNS), gliosis, pallor of myelin sheaths, abnormalities of dendritic processes and neuronal loss.[1][2]

ADC typically occurs after years of HIV infection and is associated with low CD4+ T cell levels and high plasma viral loads. It is sometimes seen as the first sign of the onset of AIDS. Prevalence is between 10-24% in Western countries[3] and has only been seen in 1-2% of India based infections.[4][5] With the advent of highly active antiretroviral therapy (HAART), the incidence of ADC has declined in developed countries, however its prevalence is increasing.[6][7] HAART may prevent or delay the onset of ADC in people with HIV infection, and may also improve mental function in people who already have ADC.

Dementia only exists when neurocognitive impairment in the patient is severe enough to interfere markedly with day-to-day function. That is, the patient is typically unable to work and may not be able to take care of him or herself. Before this, the patient is said to have a mild neurocognitive disorder.

Contents

Diagnostic criteria

  1. Marked acquired impairment of at least two ability domains of cognitive function (e.g. memory, attention): typically, the impairment is in multiple domains, especially in learning, information processing and concentration/attention. The cognitive impairment is ascertained by medical history, mental status examination or neuropsychological testing.
  2. Cognitive impairments identified in 1. interfere markedly with day-to-day functioning.
  3. Cognitive impairments identified in 1. are present for at least one month.
  4. Cognitive impairments identified in 1. do not meet the criteria for delirium, or if delirium is present, dementia was diagnosed when delirium was not present.
  5. No evidence of another, pre-existing aetiology that could explain the dementia (e.g. another CNS infection, CNS neoplasm, cerebrovascular disease, pre-existing neurological disease, severe substance abuse compatible with CNS disorder.[8]

While the progression of dysfunction is variable, it is regarded as a serious complication and, untreated, can progress to a fatal outcome. Diagnosis is made by neurologists who carefully rule out alternative diagnoses. This routinely requires a careful neurological examination, brain scans (MRI or CT scan) and a lumbar puncture to evaluate the cerebrospinal fluid. No single test is available to confirm the diagnosis, but the constellation of history, laboratory findings, and examination can reliably establish the diagnosis when performed by experienced clinicians. The amount of virus in the brain does not correlate well with the degree of dementia, suggesting that secondary mechanisms are also important in the manifestation of ADC.

Research

AIDS Dementia Complex (ADC) is not a true opportunistic infection. It is one of the few conditions caused directly by HIV itself, but it is not quite as simple as that because the central nervous system can be damaged by a number of other causes:

Many researchers believe that HIV damages the vital brain cells, neurons, indirectly. According to one theory, HIV either infects or activates cells that nurture and maintain the brain, known as macrophages and microglia. These cells then produce toxins that can set off a series of reactions that instruct neurons to kill themselves. The infected macrophages and microglia also appear to produce additional factors chemokines and cytokines - that can affect neurons as well as other brain cells known as astrocytes. The affected astrocytes, which normally nurture and protect neurons, also may now end up harming neurons. HIV protein gp120 inhibits the stem cells in the brain from producing new nerve cells.[9] In the neuronal cells, the HIV gp120 induces mitochondrial-death proteins like caspases which may influence the upregulation of the death receptor Fas leading to apoptosis.[10] Researchers hope that new drugs under investigation will interfere with the detrimental cycle and prevent neuron death.

ADC stage characteristics

References

  1. ^ a b Gray, F., Adle-Biassette, H., Chrétien, F., Lorin de la Grandmaison, G., Force, G., Keohane, C. (2001). "Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments". Clin. Neuropathol. 20 (4): 146–55. PMID 11495003. 
  2. ^ Adle-Biassette, H., Lévy, Y., Colombel, M., Poron, F., Natchev, S., Keohane, C. and Gray, F. (1995). "Neuronal apoptosis in HIV infection in adults". Neuropathol. Appl. Neurobiol. 21 (3): 218–27. doi:10.1111/j.1365-2990.1995.tb01053.x. PMID 7477730. 
  3. ^ Grant, I., Sacktor, H., and McArthur, J. (2005). "HIV neurocognitive disorders". In H. E. Gendelman, I. Grant, I. Everall, S. A. Lipton, and S. Swindells. (ed.). The Neurology of AIDS (2nd ed.). London, UK: Oxford University Press. pp. 357–373. ISBN 0-19-852610-5. http://www.hnrc.ucsd.edu/publications_pdf/2005grant1.pdf. 
  4. ^ Satishchandra, P., Nalini, A., Gourie-Devi, M., Khanna, N., Santosh, V., Ravi, V., Desai, A., Chandramuki, A., Jayakumar, P. N., and Shankar, S. K. (2000). "Profile of neurologic disorders associated with HIV/AIDS from Bangalore, south India (1989-96)". Indian J. Med. Res. 11: 14–23. PMID 10793489. 
  5. ^ Wadia, R. S., Pujari, S. N., Kothari, S., Udhar, M., Kulkarni, S., Bhagat, S., and Nanivadekar, A. (2001). "Neurological manifestations of HIV disease". J. Assoc. Physicians India 49: 343–8. PMID 11291974. 
  6. ^ Ellis, R., Langford, D., and Masliah, E. (2007). "HIV and antiretroviral therapy in the brain: neuronal injury and repair". Nat. Rev. Neurosci. 8 (1): 33–44. doi:10.1038/nrn2040. PMID 17180161. 
  7. ^ Gonzalez-Scarano, F., and Martin-Garcia, J. (2005). "The neuropathogenesis of AIDS". Nat. Rev. Immunol. 5 (1): 69–81. doi:10.1038/nri1527. PMID 15630430. 
  8. ^ Grant, I., Atkinson, J. (1995). "Psychiatric aspects of acquired immune deficiency syndrome.". In Kaplan, H.I. and Sadock, B.J. (ed.). Comprehensive textbook of psychiatry. 2 (6th ed.). Baltimore, MD: Williams and Wilkins. pp. 1644–1669. ISBN 0-683-04532-6. http://www.hnrc.ucsd.edu/publications_pdf/2161995.pdf. 
  9. ^ Okamoto, Shu-ichi; Y. Kang, C.W. Brechtel, E. Siviglia, R. Russo, A. Clemente, A. Harrop, S. McKercher, M. Kaul, and S.A. Lipton (2007). "HIV/gp120 decreases adult neural progenitor cell proliferation via checkpoint kinase-mediated cell-cycle withdrawal and G1 arrest". Cell Stem Cell 1 (2): 230–6. doi:10.1016/j.stem.2007.07.010. PMID 18371353. 
  10. ^ Thomas, S; Mayer, L; Sperber, K (2009). "Mitochondria influence Fas expression in gp120-induced apoptosis of neuronal cells". The International journal of neuroscience 119 (2): 157–65. doi:10.1080/00207450802335537. PMID 19125371.